

АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА

Департамент образования

Муниципальное автономное общеобразовательное учреждение " Школа № 59 "

Согласовано

Заместитель директора

иле Н.А. Уманская

10.07.2020

Утверждено

Директор

Е.Н. Ветрова

Приказ от 10.07.2020 №

156/01-02 маоу

РАБОЧАЯ ПРОГРАММА

по предмету

КИМИХ

11 классы (ФКГОС СОО)

2020-2021 у.г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по химии составлена в соответствии с федеральным компонентом государственного стандарта среднего (полного) общего образования (базовый уровень), одобренным совместным решением коллегии Минобразования России и Президиума РАО от 23.12.2003 г. № 21/12 и утвержденным приказом Минобрнауки РФ от 05.03.2004 г. № 1089 и примерной программы среднего (полного) общего образования (базовый уровень) (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263).

За основу рабочей программы взята программа курса химии для 8-11 классов общеобразовательных учреждений рекомендованная Департаментом образовательных программ и стандартов общего образования Министерства образования РФ, опубликованная издательством «Просвещение» в 2008 году (. Программы общеобразовательных учреждений. Химия.- М.: Просвещение, 2008. -56с.).

В рабочей программе нашли отражение цели и задачи изучения химии на ступени среднего (полного) общего образования (базовый уровень), изложенные в пояснительной записке Примерной программы по химии.

Данный курс учащиеся изучают после курса химии для 8-9 классов, где они познакомились с важнейшими химическими понятиями, неорганическими и органическими веществами, применяемыми в промышленности и повседневной жизни.

Нормативные документы, обеспечивающие реализацию программы:

- Закон РФ «Об образовании» (в редакции Федеральных законов от 05.03.2004 г. № 9-ФЗ);
- Приказ Минобрнауки РФ от 20 августа 2008 года №241 «О внесении изменений в федеральный базисный учебный план и примерные учебные планы для образовательных учреждений Российской Федерации, реализующих программы общего образования, утверждённые приказом Министерства образования Российской Федерации от 9 марта 2004 года №1312 «Об утверждении федерального базисного учебного плана и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования»;
- Приказ Министерства образования РФ от 5 марта 2004 г. № 1089 «Об утверждении федерального компонента государственных образовательных стандартов основного общего и среднего (полного) общего образования»
- Приказ Министерства образования РФ от 9 марта 2004 г. № 1312 «Об утверждении федерального базисного учебного плана и примерных учебных планов для общеобразовательных учреждений РФ, реализующих программы общего образования»;
- Методическое письмо «О преподавании учебного предмета «Химия» в условиях введения федерального компонента государственного стандарта общего образования;
- Федеральный перечень учебников, рекомендованных (допущенных) Министерством образования к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования на 2012/2013 учебный год, утвержденным Приказом МО РФ № 1067 от 19 декабря 2012 г.;

Количество часов, на которые рассчитана программа

Программа предполагает на изучение материала 33 часов в год, 1 час в неделю , для проведения контрольных работ -2 часов, практических работ -3 часов.

Цели и задачи изучения предмета:

- освоение знаний о химической составляющей естественно-научной картины мира, важнейших химических понятиях, законах и теориях;
- овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;
- развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения химических знаний с использованием различных источников информации, в том числе компьютерных;
- воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Данная программа предусматривает формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. В этом направлении приоритетами для учебного предмета «химия» в старшей школе на базовом уровне являются:

- умение самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки цели до получения и оценки результата);
- определение сущностных характеристик изучаемого объекта;
- умение развернуто обосновывать суждения, давать определения, приводить доказательства;
- оценивание и корректировка своего поведения в окружающей среде;
- выполнение в практической деятельности и повседневной жизни экологических требований;
- использование мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.

На основании требований Государственного образовательного стандарта 2004 г. в содержании рабочей программы предполагается реализовать актуальные в настоящее время компетентностный, личностноориентированный, деятельностный подходы, которые определяют задачи обучения:

- формирование знаний основ органической химии важнейших фактов, понятий, законов и теорий, языка науки, доступных обобщений мировоззренческого характера;
- развитие умений наблюдать и объяснять химические явления, соблюдать правила техники безопасности при работе с веществами в химической лаборатории и в повседневной жизни;
- развитие интереса к органической химии как возможной области будущей практической деятельности;
- развитие интеллектуальных способностей и гуманистических качеств личности;
- формирование экологического мышления, убежденности в необходимости охраны окружающей среды.

Требования к уровню подготовки обучающихся

Предметно-информационная составляющая образованности:

знать

- важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;
- *основные теории химии*: химической связи, электролитической диссоциации, строения органических соединений;
- *важнейшие вещества и материалы*: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щелочи, аммиак, минеральные удобрения, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы;

Деятельностно-коммуникативная составляющая образованности:

уметь:

- называть изученные вещества по "тривиальной" или международной номенклатуре;
- *определять*: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;
- *характеризовать*: элементы малых периодов по их положению в периодической системе Д.И. Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органических соединений;
- объяснять: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов:
- выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ;
- *проводить* самостоятельный поиск химической информации с использованием различных источников (научнопопулярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

Ценностно-ориентационная составляющая образованности:

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- объяснения химических явлений, происходящих в природе, быту и на производстве;

- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- приготовления растворов заданной концентрации в быту и на производстве;
- критической оценки достоверности химической информации, поступающей из разных источников.

УЧЕБНО – ТЕМАТИЧЕСКИЙ ПЛАН

№ ПП	Тема	Количество часов по программе	Количество часов по рабочей	В том числе практических работ	В том числе контрольных работ
		н.н.Гара	программе	•	•
1	Тема 1« Теоретические	3	2	-	-
	основы органической химии»				
2	Тема №2 «Предельные	3	3	-	-
	углеводороды (алканы)»				
3	Тема 3« Непредельные	4	4	1	-
	углеводороды»				
4	Тема 4 « Ароматические	2	2	-	-
	углеводороды (арены)»				
5	Тема 5 «Природные	3	3	-	1
	источники углеводородов»				
6	Тема 6 «Спирты и фенолы»	4	4	-	-
7	Тема 7 « Альдегиды и кетоны»	1	1	-	-
8	Тема 8« Карбоновые кислоты »	3	3	1	-
9	Тема 9 «Сложные эфиры. Жиры»	1	1	-	-
10	Тема 10. «Углеводы»	3	3	1	-
11	Тема 11 «Амины и аминокислоты»	2	2	-	-
12	Тема 12 «Белки»	2	2	-	-
13	Тема 13 «Синтетические полимеры»	4	4	-	1
	Итого	35	34	3	2

СОДЕРЖАНИЕ ПРОГРАММЫ УЧЕБНОГО КУРСА

Тема 1. Теоретические основы органической химии. 2 часа

Формирование органической химии как науки. Органические вещества. Органическая химия. Теория строения органических соединений А.М.Бутлерова. Структурная изомерия. Номенклатура. Значение теории строения органических соединений.

Электронная природа химических связей в органических соединениях. Способы разрыва связей в молекулах органических веществ.

Классификация органических соединений.

Демонстрации. 1. Ознакомление с образцами органических веществ и материалами. 2. Модели молекул органических веществ. 3. Растворимость органических веществ в воде и неводных растворителях.

4. Плавление, обугливание и горение органических веществ.

Углеводороды (11 часов+1ч к/р)

Тема 2. Предельные углеводороды (алканы). 3 часов

Электронное и пространственное строение алканов. Гомологический ряд. Номенклатура и изомерия. Физические и химические свойства алканов. Реакции замещения. Получение и применение алканов. Циклоалканы. Строение молекул, гомологический ряд. Нахождение в природе. Физические и химические свойства.

Демонстрации. 1. Взрыв смеси метана с воздухом.2. Отношение алканов к кислотам, щелочам, к раствору перманганата калия.

Лабораторные опыты. 1. Изготовление моделей молекул углеводородов и галогенопроизводных.

Расчетные задачи. Решение задач на нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.

Тема 3. Непредельные углеводороды. 4 часов

Алкены. Электронное и пространственное строение алкенов. Гомологический ряд. Номенклатура. Изомерия. Химические свойства: реакции окисления, присоединения, полимеризации. Правило Марковникова. Получение и применение алкенов. Алкадиены. Строение, свойства, применение. Природный каучук. Алкины. Электронное и пространственное строение ацетилена. Гомологи и изомеры. Номенклатура. Физические и химические свойства. Получение. Применение.

Демонстрации. *1.Горение этилена. 2. Взаимодействие этилена с раствором перманганата калия. 3. Образцы полиэтилена.*

Лабораторные опыты. 1. Изготовление моделей молекул. 2. <u>Изучение свойств натурального и синтетического</u> каучуков.

Практическая работа. Получение этилена и изучение его свойств.

Тема 4. Ароматические углеводороды (арены). 2 часа

Арены. Электронное и пространственное строение бензола. Изомерия и номенклатура. Физические и химические свойства бензола. Гомологи бензола. Особенности химических свойств бензола на примере толуола.

Генетическая связь ароматических углеводородов с другими классами углеводородов.

Демонстрации. 1. Бензол как растворитель, горение бензола. 2. Отношение бензола к раствору перманганата калия. 3. Окисление толуола.

Тема 5. Природные источники углеводородов. 2 часов

Природный газ. Попутные нефтяные газы. Нефть и нефтепродукты. Физические свойства. Способы переработки. Перегонка. Крекинг термический и каталитический.

Лабораторные опыты. 1. Ознакомление с образцами продуктов нефтепереработки.

Расчетные задачи. Решение задач на определение массовой или объемной доли выхода продукта реакции от теоретически возможного.

Кислородсодержащие органические соединения (12 часов)

Тема 6. Спирты и фенолы. 4часа

Одноатомные предельные спирты. Строение молекул, функциональная группа. Изомерия и номенклатура. Водородная связь. Свойства этанола. Физиологическое действие спиртов на организм человека. Получение и применение спиртов. Генетическая связь предельных одноатомных спиртов с углеводородами. Многоатомные спирты. Этиленгликоль, глицерин. Свойства, применение.

Фенолы. Строение молекулы фенола. Свойства фенола. Токсичность фенола и его соединений. Применение фенола.

Демонстрации. 1. Количественное выделение водорода из этилового спирта. 2. Взаимодействие этилового спирта с бромоводородом. 3. Сравнение свойств спиртов в гомологическом ряду: растворимость в воде, горение, взаимодействие с натрием. 4. Взаимодействие глицерина с натрием. 5.

Лабораторные опыты. 1. Реакция глицерина с гидроксидом меди (2). 2. Растворение глицерина в воде, его гигроскопичность.

Расчетные задачи. Решение задач по химическим уравнениям при условии, что одно из реагирующих веществ дано в избытке.

Тема 7. Альдегиды, кетоны. 1 час

Альдегиды. Строение молекулы формальдегида. Функциональная группа. Изомерия и номенклатура. Свойства альдегидов. Формальдегид и ацетальдегид: получение и применение. Ацетон – представитель кетонов. Строение молекулы. Применение.

Демонстрации. 1. Взаимодействие этаналя с аммиачным раствором оксида серебра и гидроксидом меди. 2. Растворение в ацетоне различных органических веществ.

Лабораторные опыты. 1. Получение этаналя окислением этанола. 2. Окисление этаналя аммиачным раствором оксида серебра и гидроксидом меди.

Тема 8. Карбоновые кислоты. 3 часа.

Одноосновные предельные карбоновые кислоты. Строение молекул. Функциональная группа. Изомерия и номенклатура. Свойства карбоновых кислот. Реакция этерификации. Получение карбоновых кислот и

применение. Краткие сведения о непредельных карбоновых кислотах. Генетическая связь карбоновых кислот с другими классами органических соединений.

Демонстрации. 1. Отношение олеиновой кислоты к раствору перманганата калия.

Лабораторные опыты. 1. Получение уксусной кислоты из соли, опыты с ней.

Практическая работа. 1. Получение и свойства карбоновых кислот..

Тема 9. Сложные эфиры. Жиры. 1 час

Сложные эфиры: свойства, получение, применение. жиры, строение жиров. Жиры в природе. Свойства. Применение.

Моющие средства. Правила безопасного обращения со средствами бытовой химии.

Лабораторные опыты. 1. Растворимость жиров, доказательство их непредельного характера, омыление жиров.

2. Сравнение свойств мыла и СМС. 3.Знакомство с образцами моющих средств. 4.Изучение их состава и инструкций по применению.

Тема 10. Углеводы. 3 часа

Глюкоза. Строение молекулы. Оптическая (зеркальная) изомерия. Физические свойства и нахождение в природе. Применение. Фруктоза – изомер глюкозы. Химические свойства глюкозы. Применение. ахароза. Строение молекулы. Свойства, применение.

Крахмал и целлюлоза – представители природных полимеров. Физические и химические свойства. Нахождение в природе. Применение. Ацетатное волокно.

Демонстрации.

Лабораторные опыты. 1.Взаимодействие раствора глюкозы с гидроксидом меди (II). 2.Взаимодействие глюкозы с аммиачным раствором оксида серебра. 3.Взаимодействие сахарозы с гидроксидом кальция. 4.Взаимодействие крахмала с иодом, гидролиз крахмала. 5.Ознакомление с образцами природных и искусственных волокон.

Практическая работа. Решение экспериментальных задач на получение и распознавание органических веществ.

Азотсодержащие органические соединения (4 часа)

Тема 11. Амины и аминокислоты. 2 часа

Амины. Строение молекул. Аминогруппа. Физические и химические свойства. Строение молекулы анилина. Свойства анилина. Применение.

Аминокислоты. Изомерия и номенклатура. Свойства. Аминокислоты как амфотерные органические соединения. Применение.

Генетическая связь аминокислот с другими классами органических соединений.

Тема 12. Белки. 2 часа

Белки – природные полимеры. Состав и строение. Физические и химические свойства. Превращения белков в организме. Успехи в изучении и синтезе белков. онятие об азотсодержащих гетероциклических соединениях. Пиридин. Пиррол. Пиримидиновые и пуриновые основания.

Нуклеиновые кислоты: состав, строение. имия и здоровье человека. Лекарства. Проблемы, связанные с применением лекарственных препаратов.

Демонстрации. 1. Окраска ткани анилиновым красителем. 2. Доказательства наличия функциональных групп в растворах аминокислот.

Лабораторные опыты. 1. Растворение и осаждение белков. 2. Денатурация белков. 3. Цветные реакции белков.

Высокомолекулярные соединения (3 часа+1 ч к/р)

Тема 13. Синтетические полимеры (3 часов)

Понятие о высокомолекулярных соединениях. Строение молекул. Стереорегулярное и стереонерегулярное строение. Основные методы синтеза полимеров. Классификация пластмасс. Термопластичные полимеры. Полиэтилен. Полипропилен. Термопластичность. Термореактивность. интетические каучуки. Строение, свойства, получение и применение. интетические волокна. Капрон. Лавсан.

Обобщение знаний по курсу органической химии. Органическая химия, человек и природа.

Демонстрации. Ознакомление с образцами природных и искусственных волокон, каучуков.

Лабораторные опыты. 1. Изучение свойств термопластичных полимеров. 2. Изучение свойств синтетических волокон.

Расчетные задачи. Решение расчетных задач на определение массовой или объемной доли выхода продукта реакции от теоретически возможного.

Требования к уровню подготовки обучающихся по данной программе

В результате изучения химии на базовом уровне в 10 классе ученик должен

знать / понимать:

- *важнейшие химические понятия*: химическая связь, электроотрицательность, углеродный скелет, функциональная группа, изомерия, гомология;
 - основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;
 - основные теории химии: строения органических соединений;
- важнейшие вещества и материалы: серная, соляная, азотная и уксусная кислоты; щелочи, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы;

уметь:

- *называть* изученные вещества по «тривиальной» или международной номенклатуре;
- *определять*: валентность и степень окисления химических элементов в органических соединениях, тип химической связи в органических соединениях, принадлежность веществ к различным классам органических соединений;
- *характеризовать*: общие химические основных классов органических соединений; строение и химические свойства изученных органических соединений;
- *объяснять*: зависимость свойств веществ от их состава и строения; природу химической связи в органических веществах, зависимость скорости химической реакции и положения химического равновесия от различных факторов;
- выполнять химический эксперимент по распознаванию важнейших органических веществ;
- **проводить** самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- критической оценки достоверности химической информации, поступающей из разных источников.

Тема 1. Теоретические основы органической химии

Учащиеся должны знать:

- 1. особенности состава и строения органических веществ;
- 2. основные положения теории А.М.Бутлерова;
- 3. классификацию органических веществ;
- **4.** понятия «гомолог», «изомер», «функциональная группа», «геометрия молекул».

Уметь:

- 1. доказывать положения теории на примерах;
- 2. составлять структурные формулы изомеров и гомологов;
- **3.** уметь изображать пространственные конфигурации молекул органических веществ, исходя из типа гибридизации;
- 4. изготавливать модели молекул органических соединений.

Тема 2. Предельные углеводороды (алканы)

Учащиеся должны знать:

1. состав, строение, физические и химические свойства, способы получения в лаборатории и промышленности, области применения алканов.

Уметь:

- 1. записывать структурные формулы молекул алканов, гомологов и изомеров;
- 2. называть вещества по систематической номенклатуре;

- **3.** характеризовать физические и химические свойства алканов, записывая уравнения соответствующих реакций;
- 4. использовать знания и умения безопасного обращения с горючими веществами.

Тема 3. Непредельные углеводороды

Учащиеся должны знать:

- **1.** состав, строение, физические и химические свойства, способы получения в лаборатории и промышленности, области применения непредельных углеводородов;
- 2. состав изопрена, бутадиена и натурального каучука, способы получения изопрена и бутадиена, области применения каучука и резины;

Уметь:

- 1. записывать структурные формулы молекул непредельных углеводородов, гомологов и изомеров;
- 2. называть вещества по систематической номенклатуре;
- **3.** характеризовать физические и химические свойства непредельных углеводородов, записывая уравнения соответствующих реакций;
- 4. использовать знания и умения безопасного обращения с горючими веществами;

Тема 4. Ароматические углеводороды.

Учащиеся должны знать:

- **1.** состав, строение, физические и химические свойства, способы получения в лаборатории и промышленности, области применения ароматических углеводородов;
- 2. токсическое влияние бензола на организм человека и животных.

Уметь:

- 1. записывать структурные формулы молекул ароматических углеводородов, гомологов и изомеров;
- 2. называть вещества по систематической номенклатуре;
- **3.** характеризовать физические и химические свойства ароматических углеводородов, записывая уравнения соответствующих реакций;
- 4. использовать знания и умения безопасного обращения с горючими веществами;

Тема 5. Природные источники углеводородов

Учащиеся должны знать:

- 1. состав природного газа, нефти, угля;
- 2. способы переработки сырья;
- 3. области применения продуктов переработки.

Уметь:

- 1. использовать знания и умения безопасного обращения с горючими веществами;
- 2. применять ЗУН при выполнении тренировочных упражнений;
- 3. решать задачи с производственным содержанием.

Тема 6. Спирты и фенолы

Учащиеся должны знать:

- 1. понятие об одноатомных и многоатомных спиртах, функциональной группе;
- 2. строение молекулы, физические и химические свойства, способы лабораторного и промышленного получения спиртов, области применения;
- 3. состав, строение молекулы фенола, некоторые способы получения, области применения;

Уметь:

- 1. составлять структурные формулы изомеров и называть их по систематической номенклатуре;
- 2. характеризовать физические и химические свойства одноатомных спиртов и многоатомных на примере глицерина;
- 3. использовать знания для оценки влияния алкоголя на организм человека;
- 4. характеризовать физические и химические свойства фенола;

Тема 7. Альдегиды и кетоны.

Учащиеся должны знать:

- 1. состав альдегидов и кетонов (сходство и отличие), понятие о карбонильной группе;
- 2. физические и химические свойства, способы лабораторного и промышленного получения альдегидов, области применения.

Уметь:

- 1. составлять структурные формулы изомеров и называть их по систематической номенклатуре;
- 2. характеризовать физические и химические свойства альдегидов;

Тема 8. Карбоновые кислоты

Учашиеся должны знать:

- 1. состав карбоновых кислот;
- 2. понятие о карбоксильной группе;
- 3. нахождение в природе и области применения кислот;
- 4. физические и химические свойства, способы лабораторного и промышленного получения кислот.

Уметь:

- 1. составлять структурные формулы изомеров и называть их по систематической номенклатуре;
- 2. характеризовать физические и химические свойства кислот;

Тема 9. Сложные эфиры. Жиры.

Учашиеся должны знать:

- 5. состав и строение сложных эфиров;
- 6. нахождение в природе и области применения жиров и эфиров;
- 7. физические и химические свойства, способы лабораторного и промышленного получения жиров и эфиров;

Уметь:

- 3. составлять структурные формулы изомеров и называть их по систематической номенклатуре;
- 4. характеризовать физические и химические свойства сложных эфиров;
- 5. применять ЗУН при выполнении тренировочных упражнений;
- 6. составлять уравнения реакции этерификации;
- 7. составлять структурные формулы жиров;
- 8. составлять уравнения реакций получения и гидролиза жиров.

Тема 10. Углеводы.

Учащиеся должны знать:

- 1. состав и классификацию углеводов;
- 2. состав, физические и химические свойства, получение и применение глюкозы;
- 3. состав, физические и химические свойства, получение и применение сахарозы;
- 4. состав, физические и химические свойства, получение и применение крахмала и целлюлозы;

Уметь:

- 1. характеризовать химические свойства важнейших углеводов;
- 2. составлять уравнение реакции гидролиза в общем виде;
- 3. доказывать биологическое значение углеводов;

Тема 11. Амины и аминокислоты.

- 1. состав, способы получения и области применения аминов;
- 2. особенности строения и свойств анилина как ароматического амина;
- 3. состав аминокислот, физические и химические свойства, нахождение в природе;

Уметь:

- 1. составлять структурные формулы молекул и давать им названия по систематической номенклатуре;
- 2. характеризовать свойства аминов в сравнении с аммиаком;
- 3. характеризовать физические и химические свойства аминокислот;

Тема 12. Белки.

Учащиеся должны знать

- 1. состав белков, структуры белков, понятие о денатурации;
- 2. общие понятие об азотсодержащих гетероциклических соединениях;
- 3. о проблемах, связанных с применением лекарственных препаратов.

Уметь:

- 1. составлять уравнения реакций образования простейших дипептидов и их гидролиза;
- 2. проводить качественные реакции для распознавания белков.

Тема 13. Синтетические полимеры.

Учащиеся должны знать:

- 1. основные понятия химии высокомолекулярных соединений;
- 2. области применения высокомолекулярных соединений на основании их свойств.

Уметь:

- 1. характеризовать полимеры с точки зрения основных понятий;
- 2. составлять уравнения реакций полимеризации и поликонденсации;
- 3. экспериментально распознавать пластмассы и волокна.

ПЕРЕЧЕНЬ УЧЕБНО – МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ

1. Основная литература для учителя

- 1. Стандарт среднего (полного) общего образования по химии.
- 2. Примерная программа среднего (полного) общего образования по химии (базовый уровень). Химия: сборник материалов по реализации федерального компонента государственного стандарта общего образования в общеобразовательных учреждениях /авт. сост. Е.И.Колусева, В.Е.Морозов. Волгоград: Учитель, 2006. 72 с.
- 3. Гара Н.Н. Программы общеобразовательных учреждений. Химия. М.: Просвещение, 2008. -56с.)
- 4. Рудзитис Γ .Е. Органическая химия: учебник для 10 класса общеобразовательных учреждений / Γ .Е.Рудзитис, Φ . Γ . Φ ельдман. M.: Просвещение, 2007.
- 5. Радецкий А.М. Дидактический материал по химии 10-11: пособие для учителя/ А.М.Радецкий. М.: Просвещение, 2003.
- 6. Гара Н.Н. Химия. Контрольные и проверочные работы. 10 11 классы / Н.Н.Гара. Дрофа, 2011.

2. Дополнительная литература для учителя

- 1. Брейгер Л.М. Нестандартные уроки. Химия. 8, 10,11 классы / Л.М.Брейгер. Волгоград: Учитель, 2004.
- 2. Егоров А.С. и др. Репетитор по химии /А.С.Егоров. Ростов на Дону: Феникс, 2007.
- 3. Егоров А.С. Все типы расчетных задач по химии для подготовки к ЕГЭ Издательство: Феникс, 2004 года
- 4. Единый государственный экзамен 2007. Химия. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ М.: Интеллект-Центр, 2009г.
- 5. Химия в школе: научно методический журнал.- М.: Российская академия образования; изд во «Центрхимэкспресс». 2005 2010.

3. Дополнительная литература для обучающихся

- 1. Малышкина В. Занимательная химия. Нескучный учебник. Санкт-Пертебург: Трион, 1998.
- 2. Аликберова Л.Ю., Рукк Н.С.. Полезная химия: задачи и история. М.: Дрофа, 2006.
- 3. Степин Б.Д., АликбероваЛ.Ю.. Занимательные задания и эффективные опыты по химии. М.: Дрофа, 2005.
- 4. Ушкалова В.Н., Иоанидис Н.В. Химия: Конкурсные задания и ответы: Пособие для поступающих в

ВУЗы. – М.: Просвещение, 2005.

Список литературы

Литература для учителя

Стандарт среднего (полного) общего образования по химии.

Примерная программа среднего (полного) общего образования по химии (базовый уровень). Химия: сборник материалов по реализации федерального компонента государственного стандарта общего образования в общеобразовательных учреждениях /авт. – сост. Е.И.Колусева, В.Е.Морозов. – Волгоград: Учитель, 2006. – 72 с.

Гара Н.Н. Программы общеобразовательных учреждений. Химия.- М.: Просвещение, 2008. -56с.)

Рудзитис Г.Е. Органическая химия: учебник для 10 класса общеобразовательных учреждений /Г.Е.Рудзитис, Φ .Г.Фельдман. — M.: Просвещение, 2007.

Радецкий А.М. Дидактический материал по химии 10-11: пособие для учителя/ А.М.Радецкий. — М.: Просвещение, 2003.

Гара Н.Н. Химия. Контрольные и проверочные работы. 10-11~ классы / Н.Н.Гара. — Дрофа, 2011. Брейгер Л.М. Нестандартные уроки. Химия. 8, 10,11 классы / Л.М.Брейгер. Волгоград: Учитель, 2004. Егоров А.С. и др. Репетитор по химии /А.С.Егоров. Ростов — на — Дону: Феникс, 2007.

Егоров А.С. Все типы расчетных задач по химии для подготовки к ЕГЭ Издательство: Феникс, 2004 года Единый государственный экзамен 2007. Химия. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ – М.: Интеллект-Центр, 2009г.

Химия в школе: научно — методический журнал.- М.: Российская академия образования; изд — во «Центрхимэкспресс». — 2005 - 2010.

Литература для обучающихся

Малышкина В. Занимательная химия. Нескучный учебник. — Санкт-Пертебург: Трион, 1998. Аликберова Л.Ю., Рукк Н.С.. Полезная химия: задачи и история. — М.: Дрофа, 2006. Степин Б.Д., Аликберова Л.Ю.. Занимательные задания и эффективные опыты по химии. — М.: Дрофа, 2005.

Ушкалова В.Н., Иоанидис Н.В. Химия: Конкурсные задания и ответы: Пособие для поступающих в ВУЗы.

– М.: Просвещение, 2005.